Tidal flow over topography: effect of excursion number on wave energetics and turbulence

نویسندگان

  • Masoud Jalali
  • Narsimha R. Rapaka
  • Sutanu Sarkar
چکیده

The excursion number, Ex = U0/Ωl, is a parameter that characterizes the ratio of streamwise fluid advection during a tidal oscillation of amplitude U0 and frequency Ω to the streamwise topographic length scale l. Direct numerical simulations are performed to study how internal gravity waves and turbulence change when Ex is varied from a low value (typical of a ridge in the deep ocean) to a value of unity (corresponding to energetic tides over a small topographic feature). An isolated obstacle having a smoothed triangular shape and 20 % of the streamwise length at critical slope is considered. With increasing values of Ex, the near field of the internal waves loses its beam-like character, the wave response becomes asymmetric with respect to the ridge centre, and transient lee waves form. Analysis of the baroclinic energy balance shows significant reduction in the radiated wave flux in the cases with higher Ex owing to a substantial rise in advection and baroclinic dissipation as well as a decrease in conversion. Turbulence changes qualitatively with increasing Ex. In the situation with Ex∼ 0.1, turbulence is intensified at the near-critical regions of the slope, and is also significant in the internal wave beams above the ridge where there is intensified shear. At Ex= O(1), the transient lee waves overturn adjacent to the ridge flanks and, owing to convective instability, buoyancy acts as a source for turbulent kinetic energy. The size of the turbulent overturns has a non-monotonic dependence on excursion number: the largest overturns, as tall as twice the obstacle height, occur in the Ex= 0.4 case, but there is a substantial decrease of overturn size at larger values of Ex simulated here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tidal conversion and turbulence at a model ridge: direct and large eddy simulations

Direct and large eddy simulations are performed to study the internal waves generated by the oscillation of a barotropic tide over a model ridge of triangular shape. The objective is to go beyond linear theory and assess the role of nonlinear interactions including turbulence in situations with low tidal excursion number. The criticality parameter, defined as the ratio of the topographic slope ...

متن کامل

Boundary mixing by density overturns in an internal tidal beam

[1] A numerical study based on large eddy simulation (LES) is performed to investigate near‐bottom mixing processes in an internal wave beam over a critical slope. Transition to turbulence from an initial laminar state is followed by mixing events that occur at specific phases. Maximum turbulent kinetic energy and dissipation rate are found just after the zero velocity point when flow reverses ...

متن کامل

Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model

Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...

متن کامل

On the baroclinic response of supercritical topography to an oscillating tide: LES results

Steep topography on the ocean bottom, when underneath an oscillating tide, is not only associated with significant internal wave generation at the tidal frequency but also nonlinear flow features, large overturns and turbulent flow. Here, we investigate the internal wave dynamics and turbulence at an isolated steep obstacle using a three-dimensional, high-resolution large eddy simulation (LES)....

متن کامل

Instability and focusing of internal tides in the deep ocean

The interaction of tidal currents with sea-floor topography results in the radiation of internal gravity waves into the ocean interior. These waves are called internal tides and their dissipation due to nonlinear wave breaking and concomitant threedimensional turbulence could play an important role in the mixing of the abyssal ocean, and hence in controlling the large-scale ocean circulation. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014